Airborne Differential Absorption Lidar (DIAL) – High Spectral Resolution Lidar (HSRL)

Dr. Johnathan W. Hair, Principal Investigator

Science Directorate
NASA Langley Research Center; MS 401A
Hampton, VA 23681-0001
Telephone: 757-864-1406

E-mail: Johnathan.W.Hair@nasa.gov

The NASA Langley Airborne Differential Absorption Lidar (DIAL) system uses four lasers to make DIAL O₃ profile measurements in the ultraviolet (UV) simultaneously with aerosol profile measurements in the visible and IR. Recent changes incorporate an additional laser and modifications to the receiver system that will provide aerosol backscatter, extinction, and depolarization profile measurements at three wavelengths (UV, visible, and NIR). The DIAL technique has a long history for the remote sensing of atmospheric gas profiles [e.g., Browell, 1989]. For tropospheric O₃ DIAL measurements, one of the lasers is tuned to an "on-line" wavelength of 289 nm in the Hartley-Huggins absorption band of O₃ while the other is tuned to an "off-line" wavelength of 300 nm near the edge of this absorption band (for stratospheric O₃ DIAL measurements these wavelengths are 301 and 310 nm, respectively). The UV pulsed laser light is transmitted into the atmosphere and backscattered from molecules and aerosols to a telescope that is collocated with the lasers. The backscattered UV radiation is detected by a photomultiplier tube (PMT) mounted to the telescope, and the analog signal from the PMT is digitized and recorded as a function of time, which corresponds to range from the lidar. Differences between the lidar return signals at on-line and offl-ine (e.g. 289 nm 300 nm) are primarily due to the absorption by O₃ as a function of range, and thus a profile of O₃ can be determined by examining the relative amount of energy absorbed between the on- and off-line wavelengths as a function of range.

The DIAL instrument will include for the first time aerosol and cloud measurements implementing the High Spectral Resolution Lidar (HSRL) technique [Hair, 2008]. modifications include integrating an additional 3-wavelength (355 nm, 532 nm, 1064 nm) narrowband laser and the receiver to make the following measurements; depolarization at all three wavelengths, aerosol/cloud backscatter and extinction at 532 nm via the HSRL technique, and aerosol/cloud backscatter at the 355 and 1064 nm via the standard backscatter lidar technique. Integration of the aerosol extinction profile at 532nm above and below the aircraft also provides aerosol optical depth (AOD) along the aircraft flight track. A summary of the measurements is provided in Table 1 and the basic laser, receiver, and system parameters are provided in Table 2. The DIAL system generates five wavelengths from two separate laser systems, and four separate laser beams at 289, 300, 355, and 532/1064 (combined) are simultaneously transmitted into the atmosphere above and below the aircraft. The laser beams are transmitted collinearly with the receiver telescopes through 40-cm diameter fused silica windows in the top and bottom of the aircraft. The receiver system consists of two 35-cm diameter Cassegrain telescopes (nadir and zenith pointed) with optics to direct the received signals through narrowband optical filters and onto detectors. The detectors include gateable photomultiplier tubes (PMTs) for the 289/300, 355, and 532 nm returns, and avalanche photodiodes (APDs) for the 1064-nm returns. The nadir and zenith receivers also have polarization beamsplitters for simultaneously detection of the aerosol and cloud depolarization at 355, 532, and 1064 nm. All the signals in the zenith and nadir return signals are digitized at a 10-MHz rate by 14-bit transient digitizers with high and low gains to cover the dynamic range of the signal. Atmospheric vertical and horizontal cross sections of O₃ and aerosol/cloud scattering and depolarization profiles above and below the aircraft are displayed in real-time on a color monitor and distributed on the aircraft network for inflight real-time flight planning.

The NASA airborne DIAL system has been used previously in 29 major field experiments over the past 31 years to investigate regional- and global-scale processes related to tropospheric and stratospheric O₃ and aerosols. Each of these field experiments has led to many journal publications utilizing the unique O₃ and aerosol data obtained from the airborne DIAL system. At the Lidar Group web site, (http://asd-www.larc.nasa.gov/lidar/lidar.html), users can access all the Campaign Data Set images that were obtained in each airborne field experiment starting in 1991.

References:

Browell, E. V., Differential absorption lidar sensing of ozone, *Proc. of the IEEE*, 77, 419-432, 1989. Hair, J. W., C. A. Hostetler, A. L. Cook, D. B. Harper, R. A. Ferrare, T. L. Mack, W. Welch, L. R., Izquierdo, F. E. Hovis, 2008: Airborne High Spectral Resolution Lidar for Profiling Aerosol Optical Properties, *Applied Optics*, 47,doi: 10.1364/AO.47.006734

Measurement	Wavelength	Comment
Ozone	289 nm	On- and off-lines for O ₃ DIAL
Concentration	300 nm	measurement
Aerosol	355 nm	Additional wavelength in UV
backscatter	532 nm	and calibration via HSRL
coefficient	1064 nm	technique.
Aerosol	532 nm	Internally calibrated
Extinction		extinction via HSRL
Coefficient		technique
Aerosol Optical	532 nm	Integration of aerosol
Depth (AOD)		extinction profile.
Aerosol	355 nm	Adds additional information
Depolarization	532 nm	on aerosol shape & type
	1064 nm	

Table 1. DIAL-HSRL measurement capability.

Ozone Transmitter			
Pump Laser	Big Sky CFR800		
	Repetition Rate, Hz	40	
Dye Lasers	Continuum ND-6000		
	Energy mJ (289, 300 nm)	12,15	
HSRL Transmitter			
SLM Laser	Fibertek, Inc Custom		
	Pulse Repition Rate, Hz	200	
	Energy, mJ (355,532,1064 nm)	15,20,20	
Receiver			
Telescope	Cassegrain, dia.	35.5 cm	

 Table 2. Basic Instrument Parameters

Configuration Quartz Windows Narrow Band Dye Lasers Optics Net YAO Pump Lasers (2) Flat Panel Display Dal Acquisition and Processing Backscattered laser returns Airborne DIAL Configuration Narrow Band Dye Lasers (2) Laser Power Supplies Transmit Optics On On

Airborne DIAL on NASA DC-8 Aircraft

